Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12645-12655, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571082

RESUMO

The space time frequency transfer plays a crucial role in applications such as space optical clock networks, navigation, satellite ranging, and space quantum communication. Here, we propose a high-precision space time frequency transfer and time synchronization scheme based on a simple intensity modulation/direct detection (IM/DD) laser communication system, which occupies a communication bandwidth of approximately 0.2%. Furthermore, utilizing an optical-frequency comb time frequency transfer system as an out-of-loop reference, experimental verification was conducted on a 113 km horizontal atmospheric link, with a long-term stability approximately 8.3 × 10-16 over a duration of 7800 seconds. Over an 11-hour period, the peak-to-peak wander is approximately 100 ps. Our work establishes the foundation of the time frequency transfer, based on the space laser communication channel, for future ground-to-space and inter-satellite links.

2.
ChemSusChem ; : e202301306, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078500

RESUMO

The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (ß-O-4, ß-ß, ß-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable ß-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between ß-O-4 and S-lignin and between ß-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.

3.
Nature ; 610(7933): 661-666, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198794

RESUMO

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

4.
Bioresour Technol ; 346: 126419, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838966

RESUMO

Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.


Assuntos
Benchmarking , Lignina , Carbono , Catálise , Fósseis
5.
J Hazard Mater ; 418: 126214, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102359

RESUMO

Haloacetic acids are carcinogenic disinfection by-products (DPBs) and their photo-decomposition pathways, especially for those containing bromine and iodine, are not fully understood. In this study, femtosecond transient absorption (fs-TA) spectroscopy experiments were introduced for the first time to investigate the photochemistry of tribromoacetic acid. The fs-TA experiments showed that a photoisomerization intermediate species HOOCCBr2-Br (iso-TBAA) was formed within several picoseconds after the excitation of TBAA. The absorption wavelength of the iso-TBAA was supported by time-dependent density calculations. With the Second-order Møller-Plesset perturbation theory, the structures and thermodynamics of the OH-insertion reactions of iso-TBAA were elucidated when water molecules were involved in the reaction complex. The calculations also revealed that the isomer species were able to react with water with its reaction dynamics dramatically catalyzed by the hydrogen bonding network. The proposed water catalyzed OH-insertion/HBr elimination mechanism predicted three major photoproducts, namely, HBr, CO and CO2, which was consistent with the photolysis experiments with firstly reported CO formation rate and mass conversion yield as 0.096 min-1 and 0.75 ± 0.1 respectively. The spectroscopic technique, numerical tool and disclosed mechanisms provided insights on photodecomposition and subsequent reactions of polyhalo-DPBs contain heavy atom(s) (e.g., Br, I) with water, aliphatic alcohols or other nucleophiles.


Assuntos
Acetatos , Água , Hidrocarbonetos Bromados , Fotólise , Análise Espectral
6.
Bioresour Technol ; 333: 125148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33878497

RESUMO

Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.


Assuntos
Celulossomas , Anaerobiose , Biomassa , Celulossomas/metabolismo , Genômica , Hidrólise
7.
Bioresour Technol ; 326: 124766, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33529983

RESUMO

Pretreatment is the most crucial and energy-intensive unit process affecting the feasibility of biorefinery, especially when lignin valorization is of concern. This study investigated and quantified the potential benefits of an innovative staged organosolv (OS)-dilute acid (DA) pretreatment process for whole oil palm tree residues conversion. The staged OS-DA pretreatment resulted in approximately five times higher net energy (1.50 GJ/tonne) over the single-step OSDA process (0.30GJ/tonne) due to potential energy saving on solvent recovery and less water consumption. For sugar, OS-DA pretreated substrate achieved more than 90% of cellulose digestibility which was more than 40% higher than DA-OS substrate. For mono-lignin, significant reduction in crude lignin condensation (21.7%) was confirmed by two-dimensional NMR analysis. The overall mass balance showed that approximately 142.45 tonnes of bioethanol, or a net energy yield of 969.5 GJ, can be produced by OS-DA process from palm tree residues per hectare of oil palm farm.


Assuntos
Lignina , Árvores , Biomassa , Celulose , Hidrólise
8.
Opt Express ; 28(22): 32294-32301, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114918

RESUMO

By developing a 'two-crystal' method for color erasure, we can broaden the scope of chromatic interferometry to include optical photons whose frequency difference falls outside of the 400 nm to 4500 nm wavelength range, which is the passband of a PPLN crystal. We demonstrate this possibility experimentally, by observing interference patterns between sources at 1064.4 nm and 1063.6 nm, corresponding to a frequency difference of about 200 GHz.

9.
Rev Sci Instrum ; 91(3): 035113, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259976

RESUMO

A sensitive linear optical sampling (LOS) system with femtosecond precision was implemented and experimentally optimized for free-space time-frequency transfer. The effect of optical factors and electronic factors on timing jitter and sensitivity of LOS was quantitatively studied separately based on femtosecond optical frequency combs. These factors include the intensity of received signal light, the repetition frequency difference between two combs, the number of bits of the analog-to-digital converter, and the gain of the balanced detector. According to the experimental results, the performance of the LOS system was optimized and the minimum timing jitter of LOS was 2.06 fs when the power of the received signal light was 1 µW. Moreover, the sensitivity reached 3.03 nW when using a balanced detector with 160 K gain.

10.
Phys Rev Lett ; 124(7): 070501, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142314

RESUMO

Twin-field (TF) quantum key distribution (QKD) promises high key rates over long distances to beat the rate-distance limit. Here, applying the sending-or-not-sending TF QKD protocol, we experimentally demonstrate a secure key distribution that breaks the absolute key-rate limit of repeaterless QKD over a 509-km-long ultralow loss optical fiber. Two independent lasers are used as sources with remote-frequency-locking technique over the 500-km fiber distance. Practical optical fibers are used as the optical path with appropriate noise filtering; and finite-key effects are considered in the key-rate analysis. The secure key rate obtained at 509 km is more than seven times higher than the relative bound of repeaterless QKD for the same detection loss. The achieved secure key rate is also higher than that of a traditional QKD protocol running with a perfect repeaterless QKD device, even for an infinite number of sent pulses. Our result shows that the protocol and technologies applied in this experiment enable TF QKD to achieve a high secure key rate over a long distribution distance, and is therefore practically useful for field implementation of intercity QKD.

11.
Phys Rev Lett ; 123(10): 100505, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573314

RESUMO

Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10^{-6}) is higher than that of the repeaterless secret key capacity (8.64×10^{-7}).

12.
Phys Rev Lett ; 123(9): 090502, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524445

RESUMO

Coherence is a fundamental resource in quantum information processing, which can be certified by a coherence witness. Due to the imperfection of measurement devices, a conventional coherence witness may lead to fallacious results. We show that the conventional witness could mistake an incoherent state as a state with coherence due to the inaccurate settings of measurement bases. In order to make the witness result reliable, we propose a measurement-device-independent coherence witness scheme without any assumptions on the measurement settings. We introduce the decoy-state method to significantly increase the capability of recognizing states with coherence. Furthermore, we experimentally demonstrate the scheme in a time-bin encoding optical system.

13.
Sci Bull (Beijing) ; 64(17): 1215-1221, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659601

RESUMO

Connate topological superconductor (TSC) combines topological surface states with nodeless superconductivity in a single material, achieving effective p-wave pairing without interface complication. By combining angle-resolved photoemission spectroscopy and in-situ molecular beam epitaxy, we studied the momentum-resolved superconductivity in ß-Bi2Pd film. We found that the superconducting gap of topological surface state (ΔTSS ∼ 3.8 meV) is anomalously enhanced from its bulk value (Δb ∼ 0.8 meV). The ratio of 2ΔTSS/kBTc ∼ 16.3, is substantially larger than the BCS value. By measuring ß-Bi2Pd bulk single crystal as a comparison, we clearly observed the upward-shift of chemical potential in the film. In addition, a concomitant increasing of surface weight on the topological surface state was revealed by our first principle calculation, suggesting that the Dirac-fermion-mediated parity mixing may cause this anomalous superconducting enhancement. Our results establish ß-Bi2Pd film as a unique case of connate TSCs with a highly enhanced topological superconducting gap, which may stabilize Majorana zero modes at a higher temperature.

14.
Phys Rev Lett ; 123(24): 243601, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922826

RESUMO

By engineering and manipulating quantum entanglement between incoming photons and experimental apparatus, we construct single-photon detectors which cannot distinguish between photons of very different wavelengths. These color-erasure detectors enable a new kind of intensity interferometry, with potential applications in microscopy and astronomy. We demonstrate chromatic interferometry experimentally, observing robust interference using both coherent and incoherent photon sources.

15.
Nature ; 562(7728): 548-551, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30287887

RESUMO

Randomness is important for many information processing applications, including numerical modelling and cryptography1,2. Device-independent quantum random-number generation (DIQRNG)3,4 based on the loophole-free violation of a Bell inequality produces genuine, unpredictable randomness without requiring any assumptions about the inner workings of the devices, and is therefore an ultimate goal in the field of quantum information science5-7. Previously reported experimental demonstrations of DIQRNG8,9 were not provably secure against the most general adversaries or did not close the 'locality' loophole of the Bell test. Here we present DIQRNG that is secure against quantum and classical adversaries10-12. We use state-of-the-art quantum optical technology to create, modulate and detect entangled photon pairs, achieving an efficiency of more than 78 per cent from creation to detection at a distance of about 200 metres that greatly exceeds the threshold for closing the 'detection' loophole of the Bell test. By independently and randomly choosing the base settings for measuring the entangled photon pairs and by ensuring space-like separation between the measurement events, we also satisfy the no-signalling condition and close the 'locality' loophole of the Bell test, thus enabling the realization of the loophole-free violation of a Bell inequality. This, along with a high-voltage, high-repetition-rate Pockels cell modulation set-up, allows us to accumulate sufficient data in the experimental time to extract genuine quantum randomness that is secure against the most general adversaries. By applying a large (137.90 gigabits × 62.469 megabits) Toeplitz-matrix hashing technique, we obtain 6.2469 × 107 quantum-certified random bits in 96 hours with a total failure probability (of producing a random number that is not guaranteed to be perfectly secure) of less than 10-5. Our demonstration is a crucial step towards transforming DIQRNG from a concept to a key aspect of practical applications that require high levels of security and thus genuine randomness7. Our work may also help to improve our understanding of the origin of randomness from a fundamental perspective.

16.
Opt Express ; 26(15): 18897-18905, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114149

RESUMO

Free-space quantum key distribution (QKD) is important to realize a global-scale quantum communication network. However, performing QKD in daylight against the strong background light noise is a major challenge. Here, we develop the stochastic parallel gradient descent (SPGD) algorithm with a deformable mirror to improve the signal-to-noise ratio (SNR). We then experimentally demonstrate free-space QKD in the presence of urban daylight. The final secure key rate of the QKD is 98∼419 bps throughout the majority of the daylight hours.

17.
Phys Rev Lett ; 116(24): 240502, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367371

RESUMO

Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

18.
Sci Rep ; 6: 27309, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270486

RESUMO

Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

19.
Phys Rev Lett ; 114(18): 180502, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26000991

RESUMO

In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification-making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

20.
Phys Rev Lett ; 113(19): 190501, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415890

RESUMO

Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit/s. Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...